

Draft 22/09/2012 1

Multiple inheritance in the form
of reduction

Ferhat Khendek, Gregor. v. Bochmann and Reinhard Gotzhein

Département d'informatique et de recherche opérationnelle

Université de Montréal

Montréal, Canada

Abstract

The use of multiple inheritance for deriving a new class from existing ones is a well

established technique since the introduction of the object oriented languages. In this paper,

we introduce multiple inheritance construction for processes given in the form of

acceptance trees. The conformance relationship between the newly derived process and its

parents is clearly established. Moreover, we discuss the applications of this construction.

I. Introduction

Interest in the object orientation concepts has grown considerably over the last few years.

Among these concepts, inheritance is an important one. It has different meanings [Amer

87, Wegn 88]. It is seen as an incremental technique for classes construction and

modification. By inheritance, we can derive a new object class from existing ones. It is seen

as a syntactical construction to reuse code for implementation efficiency. The second

meaning is that inheritance is viewed as a conformance relation between classes discovered

afterward by analysis methods [Amer 89, Cusa 89a, Cusa 89b]. Conformance of a class C

to a class C' means that an object of class C' can be replaced by an object of a class C in a

any system without invalidating essential system properties.

In this paper, we introduce multiple inheritance for processes modelled by Acceptance

Trees (AT's) [Henn 85]. The conformance relationship between the newly derived process

Draft 22/09/2012 2

and its parents is clearly established. In other words, we define a multiple inheritance

operator that will allow us to derive from a set of processes P1, P2, ...Pn, a process P with

the constraint that P conforms to P1, P2, ...and Pn.

For process theory, different kinds of equivalences are defined in the literature [DeNi 87].

These semantics depend on the model and the properties supposed important to consider.

They range from the coarsest one, trace semantics [Hoar 78], to the finest one, bisimulation

semantics [Miln 80]. Nevertheless, equivalence relations are too strong as conformance

relations, since they are symmetrical. The ordering relations are more suitable for that

purpose. In this paper we are interested in the reduction relation [Brin 86]. This relation

includes two aspects, the trace and deadlock properties. Informally, process P1 reduces

process P2, if and only if the traces of P1 are included in the traces of P2, and P1 deadlocks

less often than P2.

The reduction relation will play the role of conformance relation. As mentioned above, the

multiple inheritance operator will allow us to derive from a set of processes P1, P2, ...Pn, a

process P with the constraint that P reduces P1, P2, ...and Pn. Therefore, process P may be

substituted for P1, P2, ... or Pn with a confidence that (trace and deadlock) properties of the

overall system are not altered for the worse. Among other applications, this construction

allows us to give the formal meaning of reduction to multiple inheritance.

The remainder of this paper is structured as follows. Section II introduces the AT's model

for nondeterministic processes as defined in [Henn 85] and the reduction relation [Brin 86]

with some variations in the notations. The multiple inheritance construction for AT's is

introduced in Section III as well as some of its properties. In Section IV, we conclude by a

comparison with related works and discuss the applications of the multiple inheritance

operator.

II. Processes and ordering relations

II. 1 Acceptance Trees model for nondeterministic processes

The AT's model for nondeterministic processes was introduced by Hennessy [Henn 85]. It

consists of certain kind of rooted trees where both the nodes and the branches are labeled.

The information about the possible nondeterministic choices are held by the nodes. In this

Draft 22/09/2012 3

paper, we consider only closed nodes [Henn 85]. We don't take into account divergent

processes. In other words, the processes we consider are completely defined. For the

remainder of this paper, we use the terms AT, process and specification as synonyms and

we adopt the following notational conventions:

- We assume an universal non-empty set of actions L,

- Actions are denoted by a, b, c, ...,

- A trace t is a sequence of actions,

-: represents the empty trace,

- t1.t2: denotes the concatenation of traces t1 and t2,

- ø: represents the empty set.

Graphically, an AT is seen a rooted tree, where the branches are labeled by elements of L

and the nodes by elements of the powerset of L (P(L)) called acceptance sets [Henn 85].

Alternatively, we represent an AT or a process as a set of pairs <t, A>, where t is a trace

and A is an acceptance set. An acceptance set represents the potential sets of future actions,

after t. Because of nondeterminism, the set A may have more than one element. The

process can reach different internal states after performing t.

An AT satisfies the following consistency constraints [Henn 85]:

- C0: ¢ <t, A>, A ≠ ø,
- C1: ¢ <t, A>, A1 � A, and a �A1, there is one and only one <t.a, A'>,

- C2: ¢ <t.a, A'>, ¡ <t, A>, such that A1 �A and a �A1,

- C3: A is closed under union, that is, ¢ <t, A>, if A1, A2 � A then A1 " A2 �A,

- C4: A is convex-closed, that is, ¢ <t, A>, if A1, A2�A and A1⁄A3⁄A2, then A3�A.

As an example, the set {<, {{a}}>, <a, {{b}, {c}, {b, c}}>, <a.b, {ø}>, <a.c, {ø}>} is an

AT. It models a process, which may accept only b or c after executing a, depending on the

reached state. It is represented graphically by the labeled tree of Figure 1.

a

b c

{{a}}

{{b},{c}, {b, c}}

{ø} {ø}
Figure 1. Example of an AT

Draft 22/09/2012 4

II. 2. Ordering relations

Ordering and equivalence relations represent an important issue for process theory. From

the practical point of view, these relations are used to define which process may be

substituted by which other process without invalidating certain properties of the overall

system. When processes are considered as abstract specifications, these relations are also

used to define the set of valid implementations and the valid refinement steps.

Hennessy has defined an ordering relation for the AT's [Henn 85]. This relation captures

the notion of "more deterministic than" between processes. Intuitively, P1 is "more

deterministic than" P2, if P1 and P2 have the same set of traces, and P1 deadlocks less often

than P2.

Definition 2.1 (P1 is "more deterministic than" P2, written P2 ≤ P1) [Henn 85]

P2 ≤ P1, iff

- ¢ <t, A2> �P2, ¡ <t, A1> �P1, and

- ¢ <t, A1> �P1, ¡ <t, A2> �P2, such that A1 ⁄ A2.

The first condition makes this relation a bit stronger than needed. Dropping it leads us to

the reduction relation defined in [Brin 86]. Indeed, P1 reduces P2, if only if, the traces of P1

are included in the traces of P2 and P1 deadlocks less often than P2. This is what the second

condition in Definition 2.1 is about. The reduction in terms of AT's is defined, formally, as

follows:

Definition 2.2 (Reduction, written red)

Given two processes P1 and P2,

P1 red P2 iff ¢ <t, A1> �P1, ¡ <t, A2> �P2 such that A1 ⁄ A2 .

Putting P1 in a context expecting P2, will not change it for the worse. Despite P1 has fewer

traces than P2, at most it may block only where P2 may also block. In [Brin 86], the

reduction relation is defined in terms of Labeled Transition Systems [Kelle 76]. It is easy to

prove that both definitions are equivalent, given a mapping between these two models. It is

also obvious that the reduction relation is a partial order over AT's.

Draft 22/09/2012 5

III. Multiple inheritance construction

As mentioned before, we use the terms AT, process and specification as synonyms. In this

section, we will introduce the multiple inheritance construction. It will allow us to derive,

whenever it is possible, a process from a given set of processes. The derived processes,

whenever it exists, reduces the processes from which it is derived. Indeed, there exist some

situations where the multiple inheritance operator can not be applied. This is the case when

the given processes are not compatible. Intuitively, two or more processes are said to be

compatible, if and only if after any common trace, they may at least reach one common

internal state.

Definition 3.1 (Compatibility between n processes)

AT1, AT2,..., ATn are compatible, iff

¢ t, A1, A2, ..., An, we have (<t, A1> �AT1 and <t, A2> �AT2, ...and

<t, An> �ATnimplies that A1 (A2 (.... (An ≠ ø).

Figure 2 shows processes, which are two by two compatible, but incompatible all together.

a

b c

{{a}}

{{b},{c},{b, c}}

{ø} {ø}

AT1

a

b d

{{b},{d},{b, d}}

{ø} {ø}

AT2

a

d c

{{d},{c},{d, c}}

{ø} {ø}

AT3

{{a}} {{a}}

Figure 2. Examples of compatible and incompatible processes

Definition 3.2 (Multiple inheritance, written INH(AT1, AT2, ..., ATn))

Given n compatible processes, AT1, AT2, ... and ATn, we define formally

INH(AT1, AT2, ..., ATn) = {<t, A> | A=(Ai | <t, Ai> � ATi, for i = 1, ..., n }.

Proposition 3.1

If AT1, AT2, ... and ATn are compatible AT's, then INH(AT1, AT2, ..., ATn) is an AT.

Draft 22/09/2012 6

Proof

To prove that INH(AT1, AT2 ..., ATn) is an AT, we have to prove that it satisfies the

consistency constraints C0, C1, C2, C3, C4.

- C0: By definition of compatibility between AT's, if AT1, AT2 ..., ATn are compatible, the

intersection construction for a given trace t will not yield A = ø.

- C1: Given a pair <t, A> �INH(AT1, AT2 ..., ATn), A1 � A, and a �A1, we have to

prove that there exists one and only one pair <t.a, A'> �INH(AT1, AT2 ..., ATn).

<t, A> �INH(AT1, AT2 ..., ATn) implies that ¡ <t, Ai> �ATi such that A = (Ai , for i =
1, ..., n. This implies that A1 � Ai , for i = 1, ..., n. The ATi for i = 1, ..., n are AT's, it

follows that there exists one and only <t.a, Ai'> �ATi , for i = 1, ..., n.

AT1, AT2 ..., ATn are compatible, it follows that there exists one and only one <t.a, A'>

�INH(AT1, AT2 ..., ATn) such that A' = (Ai' ≠ ø, for i = 1, ..., n.

- C2: Given a pair <t.a, A'> �INH(AT1, AT2 ..., ATn), we have to prove that ¡ <t, A>
�INH(AT1, AT2 ..., ATn), such that ¡ A1 �A and a �A1.

<t.a, A'> �INH(AT1, AT2 ..., ATn) implies that ¡ <t.a, Ai'> �ATi such that A' = (Ai', for

i = 1, ..., n. The ATi , for i = 1, ..., n are AT's, it follows that ¡ <t, Ai> �ATi, such that ¡
Ai1 �Ai and a �Ai1 , for i = 1, ..., n. AT1, AT2 ..., ATn are compatible, it implies that ¡

<t, A>�INH(AT1, AT2 ..., ATn) such that A = (Ai ≠ ø, for i = 1,..., n.
A ≠ ø , ¡ A1 �A, which also belongs to all Ai , for i = 1, ..., n. We have Ai1 �Ai (and a

�Ai1 , for i = 1, ..., n) and the ATi satisfy the constraint C3, it follows that A1 " Ai1 �Ai,

for i = 1, ..., n. We have A1 ⁄ A1 " {a}⁄ A1 " Ai1, because a �Ai1 , for i = 1, ..., n. By

constraint C4, it follows that A1 " {a} �Ai , for i = 1, ..., n, then A1 " {a} �A.

- C3: Given a pair <t, A> �INH(AT1, AT2 ..., ATn), we have to show that if A1, A2 � A

then A1 " A2 �AP.

If <t, A> �INH(AT1, AT2 ..., ATn), then ¡ <t, Ai> �ATi, such that A = (Ai ≠ ø , for i =
1, ..., n. If there exist A1, A2 � A, it means that there exist A1, A2 �Ai, for i = 1, ..., n.

Draft 22/09/2012 7

The ATi, for i = 1, ..., n, are AT's, they satisfy constraint C3, which means that A1 " A2

�Ai, for i = 1, ..., n. It follows A1 " A2 �A, since A = (Ai , for i = 1, ..., n.

- C4: A is convex-closed, that is, ¢ <t, A> �INH(AT1, AT2 ..., ATn) , if A1, A2 �A and

A1 ⁄ A3 ⁄ A2, then A3 �A.

 It is similar to the proof of constraint C3. �

Figure 3 shows an example. The AT drawn in this figure is derived from AT1 and AT2 of

Figure 2 by application of the multiple inheritance operator INH. It is straightforward to

verify that INH(AT1, AT2) reduces AT1 and AT2.

{{a}}

{{b}}

{ø}

a

b

INH(AT1, AT2)

Figure 3. Example of multiple inheritance

In the following, we list some properties of the multiple inheritance construction.

Proposition 3.2

- AT1 = INH(AT1) = INH(AT1, AT1),

- If AT1, AT2 are compatible, then INH(AT1, AT2) =INH(AT2, AT1),

- If AT1, AT2, AT3 are compatible, then

INH(AT1, INH(AT2, AT3)) = INH(INH(AT1, AT2), AT3) = INH(AT1, AT2, AT3).

Proofs

They follow from Definition 3.2. �

Draft 22/09/2012 8

Proposition 3.3
If AT1, AT2, ..., ATn are compatible, then

INH(AT1, AT2, ..., ATn) red AT1,

INH(AT1, AT2, ..., ATn) red AT2,

...
INH(AT1, AT2, ..., ATn) red ATn.

Proof

It follows from Definition 3.2 �

Proposition 3.4
If AT1, AT2, ..., ATn are compatible, then INH(AT1, AT2, ..., ATn) is the "largest"

common reduction of AT1, AT2, ... and ATn.

Proof

Given a set of compatible processes AT1, AT2, ... and ATn, we have to prove that for any

process ATx, if ATx red AT1, ATx red AT2, ... and ATx red ATn, then ATx red

INH(AT1, AT2, ..., ATn).

Let ATx be a process such that ATx red AT1, ATx red AT2, ... and ATx red ATn,

ATx red AT1, it follows from Definition 2.2 that ¢ <t, Ax> �ATx, ¡ <t, A1> �AT1 such

that Ax ⁄ A1,

ATx red AT2, it follows from Definition 2.2 that ¢ <t, Ax> �ATx, ¡ <t, A2> �AT2 such

that Ax ⁄ A2,

... and

ATx red ATn, it follows from Definition 2.2 that ¢ <t, Ax> �ATx, ¡ <t, An> �ATn such

that Ax ⁄ An,

It follows that ¢ <t, Ax> �ATx, ¡ <t, A1> �AT1 , ¡ <t, A2> �AT2,..., ¡ <t, An> �ATn,

such that Ax ⁄ A1, Ax ⁄ A2, ... and Ax ⁄ An,

From Definition 3.2 of multiple inheritance construction, it follows that ¢ <t, Ax> �ATx,

¡ <t, A> � INH(AT1, AT2, ..., ATn),with A = (Ai, for i = 1, ..., n,

Since Ax ⁄ Ai, for i = 1, ..., n, it follows that Ax ⁄ A,

Consequently ATx red INH(AT1, AT2, ..., ATn).

Draft 22/09/2012 9

IV. Related works, applications and discussion

In some previous work [Boch 91], the issue of multiple inheritance with a conformance

constraint was pointed out by Bochmann. For given class specifications C1, C2, ..., Cn, the

conformance relation is defined such that INH(C1, C2, ..., Cn) conforms to C1, C2, ... and

Cn. However, this conformance relation concerns only trace properties, whereas deadlock

properties are not preserved. In other words, INH(C1, C2, ..., Cn) can not perform a trace

of actions, which can not be performed by C1, C2, ... and Cn. However, it can deadlock in

some situations where no one of C1, C2, ... and Cn will deadlock.

The multiple inheritance operator INH, introduced in this paper, is given in terms of AT's.

Therefore, it can be applied for any process algebraic language where the processes can be

interpreted by AT's.

Since the introduction of LOTOS [ISO 8807], the constraint oriented specification style

has been promoted [Brin 89]. Different constraints on a component are described

separately. The parallel operator is used as logical AND to connect all these constraints.

The properties concerned by this conjunction are limited to the trace properties. If we

consider as example of constraint process P1 of Figure 4, and compose it with itself by the

parallel operator for a logical conjunction of constraint P1 with itself, we obtain process P2

of Figure 4. Their corresponding representations in terms of AT's are given by AT1 and

AT2 of Figure 4, respectively. We have P1 (AT1) red P2 (AT2), but not the opposite. A

conjunction of a constraint with itself doesn't lead to this constraint. This is due to the

presence of nondeterminism in P1 and the operational aspect of the parallel operator.

However, this is not the case for the multiple inheritance construction INH introduced in

this paper, which plays a role of a conceptual operator for processes or constraints

construction. We have AT1 = INH(AT1, AT1).

Draft 22/09/2012 10

a a

b c

a

b c

{a}

{{b},{c}, {b, c}}

{ø}

(a)

(c)

a a

b c

(b)

a

P1 P2

{ø}

AT1

a

b c

{a}

{ø, {b},{c}, {b, c}}

{ø}

(d)

{ø}

AT2

Figure 4. Constraint oriented specification style in LOTOS

Some similar work has been done in [Ichi 90]. They introduced a new construction ,

which allows to build, incrementally, a new process P from two given processes P1 and P2

(P = P1 P2), such that P1 and P2 are both extended by P. The extension is another

ordering relation between processes defined in [Brin 86]. It concerns, specially, partial

processes, which can be extended by adding new traces, without altering the deadlock

properties for the worse. In other words, the new process has more traces and deadlocks

less often than the previous one. The process P1 P2 exists for any pair of processes P1

and P2. The construction plays the role of our INH, and the extension relation plays the

role of conformance. The subset of LOTOS adopted in this work does not include

nondeterministic processes. The same relation is also chosen in [Cusa 89a] to introduce the

concept of inheritance in an object oriented interpretation of LOTOS.

In some specification techniques [Brin 86, Quem 91], options are modeled as

nondeterministic choice. For given specifications P1, P2, ... and Pn, compatibility means

they have options in common. These common options are described by INH(P1, P2, ...,

Draft 22/09/2012 11

Pn). This is the "largest" common set of options, as stated by Proposition 3.4. This means

no further design decisions are made. In the same manner, the multiple inheritance

construction could be used to define the common subset service for interworking, given

two service specifications [Boch 90]. In this case, some renaming of service primitives will

be necessary.

When the reduction is taken as an implementation relation, the construction introduced in

this paper allows us to define, whenever it is possible, a common implementation INH(P1,

P2, ..., Pn) for a given set of specifications P1, P2, ... and Pn. This yields the advantage of

handling only one implementation for a set of specifications and avoiding the

interoperability problem between different implementations.

Acknowledgements

The authors would like to thank A. Schaff, P. de Saqui-Sannes and R. Fournier for their

helpful comments on drafts of this paper. This research is funded by the Canadian Institute

for Telecommunications Research (CITR).

References

[Amer 87] P. H. M. America, Inheritance and Subtyping in a parallel object-oriented

language, ECOOP'87, pp. 235-242.

[Amer 89] P. H. M. America, A behavioural approach to subtyping in object-oriented

programming languages, Philips Journal Research , Vol. 44, No. 2/3, pp. 365-383.

[Boch 90] G. v. Bochmann and P. Mondain-Monval, Design Principles for

Communication Gateways, IEEE Journal on Selected Areas in Communications, Vol. 8,

No. 1, January 1990.

[Boch 91] G. v. Bochmann, On the specialization of object behaviors, in J.Palsberg &

M.I.Schwartzbach (ed.) Types, Inheritance and Assignments, a collection of position

papers from the ECOOP'91 workshop W5, Geneva, Switzerland, July 1991.

Draft 22/09/2012 12

[Brin 86] E. Brinksma, G. Scollo and S. Steenbergen, LOTOS specifications, their

implemetations and their tests, Protocol Specification, testing and verification, VI,

Montréal, Canada, 1986, Sarikaya and Bochmann (eds.).

[Brin 89] E. Brinksma, Constraint oriented specification in a constructive formal

description technique, in Stepwise refinement fo distibuted systems, Models, Formalisms,

Correctness, REX Workshop, Mook, The Netherlands, Bakker, Roever and Rozenberg

(eds.).

[Cusa 89a] E. Cusack, S. Rudkin and C. Smith, An object oriented interpretation of

LOTOS, FORTE'89,Vancouver, Canada, Vuong et and al.(ed.), pp. 265-284.

[Cusa 89b] E. Cusack, Refinement, Conformance and Inheritance, Workshop on the

Theory and Practice of Refinement, Open University, 1989.

[DeNi 87] R. De Nicola, Extensional equivalences for transition systems, Acta Inform.

24 (1987), pp. 211- 237.

[Henn 85] M. Hennessy, Acceptances Trees, J. of ACM, Vol.32, No. 4, Oct. 1985, pp.

896 - 928.

[Hoar 78] C. A. R. Hoare, Communicating Sequential Processes, Comm. of the ACM

21 (1978), pp. 666 - 677.

[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in

LOTOS, IFIP Protocol Specification, Testing and Verification X (1990), Ottawa, Canada,

Logrippo, Probert and Ural (ed.).

[ISO 8807] ISO - Information Processing Systems - Open Systems Interconnection,

LOTOS - A Formal Description Technique Based on the Temporal Ordering of

Observational Behaviour, DIS 8807, 1987.

[Kell 76] R. Keller, Formal verification of parallel programs, Comm. of the ACM 19

July 1976, pp. 371-384.

Draft 22/09/2012 13

[Miln 80] R. Milner, A Calculus of Communicating Systems, Lecture Notes in

Computer Science, Vol. 92, Springer-Verlag, Berlin, 1980.

[Quem 91] J. Quemada, A. Azcorra And S. Pavon, Development with LOTOS,

Tutorial, FORTE '91, Sidney, Australia.

[Wegn 88] P. Wegner and S. B. Zdonik, Inheritance as an incremental modification

mechanism or what like is and isn't like, ECOOP'88, pp. 55-77.

