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Abstract 

The use of multiple inheritance for deriving a new class from existing ones is a well 

established technique since the introduction of the object oriented languages. In this paper, 

we introduce multiple inheritance construction for processes given in the form of 

acceptance trees. The conformance relationship between the newly derived process and its 

parents is clearly established. Moreover, we discuss the applications of this construction. 

 

 

I. Introduction  

 

Interest in the object orientation concepts has grown considerably over the last few years.  

Among these concepts, inheritance is an important one.  It has different meanings [Amer 

87, Wegn  88]. It is seen as an incremental technique for classes construction and 

modification. By inheritance, we can derive a new object class from existing ones. It is seen 

as a syntactical construction to reuse code for implementation efficiency.  The second 

meaning is that inheritance is viewed as a conformance relation between classes discovered 

afterward by  analysis methods [Amer 89, Cusa 89a, Cusa 89b]. Conformance of a class C 

to a class C' means that an object of class C' can be replaced by an object of a class C in a 

any system without invalidating essential system properties. 

 

In this paper,  we introduce multiple inheritance for processes modelled by Acceptance 

Trees (AT's) [Henn 85]. The conformance relationship between the newly derived process 
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and its parents is clearly established.  In other words, we define a multiple inheritance 

operator that will allow us to derive from a set of processes P1, P2, ...Pn, a process P with 

the constraint that P conforms to P1, P2, ...and Pn.  

 

For process theory, different kinds of equivalences are defined in the literature [DeNi 87]. 

These semantics depend on the model and the properties supposed important to consider. 

They range from the coarsest one, trace semantics [Hoar 78], to the finest one, bisimulation 

semantics [Miln 80]. Nevertheless, equivalence relations are too strong as conformance 

relations, since they are symmetrical. The ordering relations are more suitable for that 

purpose. In this paper we are interested in the reduction relation [Brin 86]. This relation 

includes two aspects,  the trace and deadlock properties. Informally, process P1 reduces 

process P2, if and only if the traces of P1 are included in the traces of P2, and P1 deadlocks 

less often than P2.  

 

The reduction relation will play the role of conformance relation. As mentioned above,  the 

multiple inheritance operator will allow us to derive from a set of processes P1, P2, ...Pn, a 

process P with the constraint that P reduces P1, P2, ...and Pn. Therefore, process P may be 

substituted for P1, P2, ... or Pn with a confidence that (trace and deadlock) properties of the 

overall system are not altered for the worse. Among other applications, this construction 

allows us to give the formal meaning of reduction to multiple inheritance.  

 

The remainder of this paper is structured as follows. Section II introduces the AT's model 

for nondeterministic processes as defined in [Henn 85] and the reduction relation [Brin 86] 

with some variations in the notations. The multiple inheritance construction for AT's is 

introduced in Section III as well as some of its properties. In Section IV, we conclude by a 

comparison with related works and discuss the applications of the multiple inheritance 

operator. 

 

 

II. Processes and ordering relations 

 

II. 1 Acceptance Trees model for nondeterministic processes 

 

The AT's model for nondeterministic processes was introduced by Hennessy [Henn 85]. It 

consists of certain kind of rooted trees where both the nodes and the branches are labeled. 

The information about the possible nondeterministic choices are held by the nodes. In this 
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paper, we consider only closed nodes [Henn 85]. We don't take into account divergent 

processes. In other words, the processes we consider are completely defined. For the 

remainder of this paper,  we use the terms AT, process and specification as synonyms and 

we adopt the following notational conventions: 

- We assume an universal non-empty set of actions L, 

- Actions are denoted by a, b, c, ..., 

- A trace t is a sequence of actions,  

-: represents the empty trace, 

- t1.t2: denotes the concatenation of traces t1 and t2, 

- ø: represents the empty set. 

 

Graphically,  an AT is seen a rooted tree, where the branches are labeled by elements of L 

and the nodes by elements of the powerset of L (P(L)) called acceptance sets [Henn 85].  

Alternatively, we represent an AT  or a process as a set of pairs <t, A>, where t is a trace 

and A is an acceptance set. An acceptance set represents the potential sets of future actions, 

after t. Because of nondeterminism, the set A may have more than one element. The 

process can reach different internal states after performing t.  

 

An AT satisfies the following consistency constraints [Henn 85]: 

- C0: ¢ <t, A>, A ≠ ø, 
- C1: ¢ <t, A>, A1 � A, and a �A1, there is one and only one <t.a, A'>, 

- C2: ¢ <t.a, A'>,  ¡ <t, A>, such that  A1 �A and a �A1, 

- C3: A is closed under union, that is, ¢ <t, A>, if A1, A2 � A then A1 " A2 �A, 

- C4: A is convex-closed, that is, ¢ <t, A>, if A1, A2�A and A1⁄A3⁄A2, then A3�A. 

 

As an example, the set {<, {{a}}>, <a, {{b}, {c}, {b, c}}>, <a.b, {ø}>, <a.c, {ø}>} is an 

AT. It models a process, which may accept only b or c after executing a, depending on the 

reached state. It is represented graphically by the labeled tree of Figure 1.  

 

a

b c

{{a}}

{{b},{c}, {b, c}}

{ø} {ø}  
Figure 1. Example of an AT 
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II. 2. Ordering relations 

 

Ordering and equivalence relations represent an important issue for process theory.  From 

the practical point of view, these relations are used to define which process may be 

substituted by which other process without invalidating certain properties of the overall 

system. When processes are considered as abstract specifications, these relations are also 

used to define the set of valid implementations and the valid refinement steps.   

 

Hennessy has defined an ordering relation for the AT's [Henn 85]. This relation captures 

the notion of "more deterministic than" between processes. Intuitively, P1 is "more 

deterministic than" P2, if P1 and P2 have the same set of traces, and P1 deadlocks less often 

than P2. 

 

Definition 2.1 (P1 is "more deterministic than" P2, written P2 ≤ P1) [Henn 85] 

P2 ≤ P1,  iff  

-  ¢ <t, A2> �P2,   ¡ <t, A1> �P1, and  

-  ¢ <t, A1> �P1,   ¡ <t, A2> �P2,  such that A1 ⁄ A2.  

 

The first condition makes this relation a bit stronger than needed.  Dropping it leads us to 

the reduction relation defined in [Brin 86]. Indeed, P1 reduces P2, if only if, the traces of P1 

are included in the traces of P2 and P1 deadlocks less often than P2. This is what the second 

condition in Definition 2.1 is about.  The reduction in terms of AT's is defined, formally, as 

follows: 

 

Definition 2.2 (Reduction, written red) 

Given two processes  P1 and  P2,  

P1 red P2  iff  ¢ <t, A1> �P1,   ¡ <t, A2> �P2  such that A1 ⁄  A2 . 

 

Putting P1 in a context expecting P2, will not change it for the worse. Despite P1 has fewer 

traces than P2, at most it may block only where P2 may also block. In [Brin 86], the 

reduction relation is defined in terms of Labeled Transition Systems [Kelle 76]. It is easy to 

prove that both definitions are equivalent, given a mapping between these two models. It is 

also obvious that the reduction relation is a partial order over AT's. 
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III. Multiple inheritance construction 

 

As mentioned before, we use the terms AT, process and specification as synonyms. In this 

section, we will introduce the multiple inheritance construction. It will allow us to derive, 

whenever it is possible, a process from a given set of processes. The derived processes, 

whenever it exists, reduces the processes from which it is derived. Indeed, there exist some 

situations where the multiple inheritance operator can not be applied. This is the case when 

the given processes are not compatible. Intuitively, two or more processes are said to be 

compatible, if and only if after any common trace, they may at least  reach one common 

internal state.  

 

Definition 3.1 (Compatibility between n processes) 

AT1,  AT2,..., ATn are compatible, iff  

¢ t, A1, A2, ..., An, we have (<t, A1> �AT1 and <t, A2> �AT2, ...and  

<t, An> �ATnimplies that A1 ( A2 ( .... ( An ≠ ø).    

 

Figure 2 shows  processes, which are two by two compatible, but incompatible all together. 

 

 

a

b c

{{a}}

{{b},{c},{b, c}}

{ø} {ø}

AT1

a

b d

{{b},{d},{b, d}}

{ø} {ø}

AT2

a

d c

{{d},{c},{d, c}}

{ø} {ø}

AT3

{{a}} {{a}}

 

Figure 2. Examples of compatible and incompatible processes 

 

Definition 3.2 (Multiple inheritance, written INH(AT1,  AT2, ..., ATn)) 

Given n compatible processes, AT1,  AT2, ... and ATn, we define formally 

INH(AT1,  AT2, ..., ATn) = {<t, A> | A=( Ai | <t,  Ai> � ATi, for i = 1, ..., n }. 

 

Proposition 3.1 

If AT1,  AT2, ... and  ATn are compatible AT's, then INH(AT1,  AT2, ..., ATn) is an AT.  
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Proof  

 

To prove that INH(AT1,  AT2 ..., ATn) is an AT, we have to prove that it satisfies the 

consistency constraints C0, C1, C2, C3, C4. 

 

- C0: By definition of compatibility between AT's, if AT1,  AT2 ..., ATn are compatible, the 

intersection construction for a given trace t  will not yield  A = ø.   

 
- C1: Given a pair <t, A> �INH(AT1,  AT2 ..., ATn),  A1 � A, and a �A1,  we have to 

prove that there exists one and only one pair <t.a, A'> �INH(AT1,  AT2 ..., ATn). 

 

<t, A> �INH(AT1,  AT2 ..., ATn) implies  that ¡ <t, Ai> �ATi such that A = ( Ai , for i = 
1, ..., n.  This implies that  A1 � Ai , for i  = 1, ..., n. The ATi for i = 1, ..., n are AT's, it 

follows that there exists one and only <t.a, Ai'> �ATi , for i = 1, ..., n.  

AT1,  AT2 ..., ATn are compatible, it follows that there exists one and only one <t.a, A'> 

�INH(AT1,  AT2 ..., ATn) such that  A' = ( Ai' ≠ ø,  for i = 1, ..., n. 

 

- C2: Given a pair <t.a, A'> �INH(AT1,  AT2 ..., ATn),  we  have to prove that ¡ <t, A> 
�INH(AT1,  AT2 ..., ATn), such that  ¡ A1 �A and a �A1. 

 

<t.a, A'> �INH(AT1,  AT2 ..., ATn) implies that ¡ <t.a, Ai'> �ATi such that  A' = ( Ai', for 

i = 1, ..., n. The ATi , for i = 1, ..., n are AT's, it follows that ¡ <t, Ai> �ATi, such that  ¡ 
Ai1 �Ai and a �Ai1 ,  for i = 1, ..., n.  AT1,  AT2 ..., ATn are compatible, it implies that ¡ 

<t, A>�INH(AT1,  AT2 ..., ATn) such that A = ( Ai ≠ ø, for i = 1,..., n. 
A ≠ ø , ¡ A1 �A, which also belongs to all Ai , for i = 1, ..., n. We have Ai1 �Ai (and a 

�Ai1 , for i = 1, ..., n) and the ATi satisfy the constraint C3,  it follows that A1 " Ai1 �Ai, 

for i = 1, ..., n. We have A1 ⁄ A1 " {a}⁄  A1 " Ai1, because  a �Ai1 , for i = 1, ..., n. By 

constraint C4, it follows that A1 " {a} �Ai , for i = 1, ..., n, then  A1 " {a} �A. 

 
- C3: Given a pair <t, A> �INH(AT1,  AT2 ..., ATn),  we have to show that if A1, A2 � A 

then A1 " A2 �AP. 

 

If <t, A> �INH(AT1,  AT2 ..., ATn), then  ¡ <t, Ai> �ATi,  such that A = ( Ai ≠ ø , for i = 
1, ..., n. If there exist A1, A2 � A, it means that there exist A1,  A2 �Ai, for i = 1, ..., n.  
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The ATi, for i = 1, ..., n, are AT's, they satisfy  constraint C3, which means that A1 "  A2 

�Ai, for i = 1, ..., n. It follows A1 "  A2 �A, since A = ( Ai , for i = 1, ..., n. 

 
- C4: A is convex-closed, that is, ¢ <t, A> �INH(AT1,  AT2 ..., ATn) , if A1, A2 �A and 

A1 ⁄ A3 ⁄ A2, then A3 �A. 

 

 It is similar to the proof of constraint C3.       �  

 

Figure 3 shows an example. The AT drawn in this figure is derived from AT1 and AT2 of 

Figure 2 by application of the multiple inheritance operator INH. It is straightforward to 

verify that INH(AT1, AT2) reduces AT1 and AT2.  

 

 

{{a}}

{{b}}

{ø}

a

b

INH(AT1, AT2)

 
 

Figure 3. Example of multiple inheritance 

 

In the following, we list some properties of the multiple inheritance construction. 

 

Proposition 3.2 

- AT1 = INH(AT1) = INH(AT1, AT1), 

- If AT1, AT2 are compatible, then INH(AT1, AT2) =INH(AT2, AT1), 

- If AT1, AT2, AT3 are compatible, then  

INH(AT1, INH(AT2, AT3)) = INH(INH(AT1, AT2), AT3)  = INH(AT1, AT2, AT3).  

 

Proofs 

They follow from Definition 3.2.       �  
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Proposition 3.3 
If AT1, AT2, ..., ATn are compatible, then 

INH(AT1, AT2, ..., ATn)  red AT1, 

INH(AT1, AT2, ..., ATn)  red AT2, 

... 
INH(AT1, AT2, ..., ATn)  red ATn. 

 

Proof 

It follows from Definition 3.2       �  

 

Proposition 3.4 
If AT1, AT2, ..., ATn are compatible, then INH(AT1, AT2,  ..., ATn)  is the "largest" 

common reduction of AT1, AT2, ... and ATn. 

 

Proof 

 

Given a set of compatible processes AT1, AT2, ... and ATn, we have to prove that  for any 

process ATx, if ATx  red  AT1, ATx  red AT2, ... and ATx red ATn, then ATx red  

INH(AT1, AT2,  ..., ATn). 

 

Let ATx be a process such that ATx red AT1, ATx red AT2, ... and ATx red ATn, 

ATx  red  AT1, it follows from Definition 2.2 that  ¢ <t, Ax> �ATx,   ¡ <t, A1> �AT1  such 

that Ax ⁄  A1, 

ATx  red  AT2, it follows from Definition 2.2 that  ¢ <t, Ax> �ATx,   ¡ <t, A2> �AT2  such 

that Ax ⁄  A2, 

... and  

ATx  red  ATn, it follows from Definition 2.2 that  ¢ <t, Ax> �ATx,   ¡ <t, An> �ATn  such 

that Ax ⁄  An, 

It follows that ¢ <t, Ax> �ATx, ¡ <t, A1> �AT1 , ¡ <t, A2> �AT2,..., ¡ <t, An> �ATn, 

such that  Ax ⁄  A1, Ax ⁄  A2, ... and Ax ⁄  An, 

From Definition 3.2 of multiple inheritance construction, it follows that  ¢ <t, Ax> �ATx,  

¡ <t, A> � INH(AT1, AT2,  ..., ATn),with  A = ( Ai, for i = 1, ..., n, 

Since Ax ⁄  Ai, for i = 1, ..., n, it follows that Ax ⁄  A, 

 

Consequently ATx  red INH(AT1, AT2, ..., ATn). 
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IV. Related works,  applications and discussion 

 

In some previous work [Boch 91], the issue of multiple inheritance with a conformance 

constraint was pointed out by Bochmann. For given class specifications C1, C2, ..., Cn, the  

conformance relation is defined such that INH(C1, C2, ..., Cn)  conforms to C1, C2, ... and 

Cn. However, this conformance relation concerns only trace properties, whereas deadlock 

properties are not preserved.  In other words, INH(C1, C2, ..., Cn) can not perform a trace 

of actions, which can not be performed by C1, C2, ... and Cn. However, it can deadlock in 

some situations where no one of C1, C2, ... and Cn will deadlock. 

 

The multiple inheritance operator INH, introduced in this paper, is given in terms of AT's. 

Therefore,  it can be applied for any process algebraic language where the processes can be 

interpreted by AT's. 

 

Since the introduction of LOTOS [ISO 8807],  the constraint oriented specification style 

has been promoted [Brin 89]. Different constraints on a component are described 

separately. The parallel operator is used as logical AND to connect all these constraints. 

The properties concerned by this conjunction are limited to the trace properties. If we 

consider as example of constraint process P1 of Figure 4, and compose it with itself by the 

parallel operator for a logical conjunction of constraint P1 with itself, we obtain process P2 

of Figure 4. Their corresponding representations in terms of AT's are given by AT1 and 

AT2 of Figure 4, respectively. We have P1 (AT1) red P2 (AT2), but not the opposite. A 

conjunction of a constraint with itself doesn't lead to this constraint. This is due to the 

presence of nondeterminism in P1 and the operational aspect of the parallel operator. 

However, this is not the case for the multiple inheritance construction INH introduced in 

this paper, which plays a role of a conceptual operator for processes or constraints 

construction. We have AT1 = INH(AT1, AT1).  
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a a

b c

a

b c

{a}

{{b},{c}, {b, c}}

{ø}

(a)

(c)

a a

b c

(b)

a

P1 P2

{ø}

AT1

a

b c

{a}

{ø, {b},{c}, {b, c}}

{ø}

(d)

{ø}

AT2

 
 

Figure 4. Constraint oriented specification style in LOTOS 

 

Some similar work has been done in [Ichi 90]. They introduced a new construction , 

which  allows to build, incrementally, a new process P from two given processes P1 and P2  

(P = P1  P2), such that P1 and P2 are both extended by P. The extension is another 

ordering relation between processes defined in [Brin 86].  It concerns, specially, partial 

processes, which can be extended by adding new traces, without altering the deadlock 

properties for the worse. In other words, the new process has more traces and deadlocks 

less often than the previous one. The process P1  P2 exists for any pair of processes P1 

and P2.  The construction  plays the role of our INH, and the extension relation plays the 

role of conformance. The subset of LOTOS adopted in this work does not include 

nondeterministic processes. The same relation is also chosen in [Cusa 89a] to introduce the 

concept of inheritance in an object oriented interpretation of LOTOS.  

 

In some specification techniques [Brin 86, Quem 91], options are modeled as 

nondeterministic choice. For given specifications P1, P2, ... and Pn, compatibility means 

they have options in common. These common options are described by INH(P1, P2, ..., 
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Pn). This is the "largest" common set of options, as stated by Proposition 3.4. This means 

no further design decisions are made. In the same manner, the multiple inheritance 

construction could be used to define the common subset service for interworking, given 

two service specifications [Boch 90]. In this case, some renaming of service primitives will 

be necessary. 

 

When the reduction is taken as an implementation relation, the construction introduced in 

this paper allows us to define, whenever it is possible, a common implementation INH(P1, 

P2, ..., Pn) for a given set of specifications P1, P2, ... and Pn. This yields the advantage of 

handling only one implementation for a set of specifications and avoiding the 

interoperability problem between different implementations.   
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